
Citation: Sharma, P.; Zhang, Z.;

Conroy, T.B.; Hui, X.; Kan, E.C.

Attention Detection by Heartbeat and

Respiratory Features from

Radio-Frequency Sensor. Sensors

2022, 22, 8047. https://doi.org/

10.3390/s22208047

Academic Editors: Ignacio Oropesa,

Patricia Sánchez-González and

Magdalena Karolina Chmarra

Received: 20 September 2022

Accepted: 17 October 2022

Published: 21 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Attention Detection by Heartbeat and Respiratory Features
from Radio-Frequency Sensor
Pragya Sharma * , Zijing Zhang, Thomas B. Conroy, Xiaonan Hui and Edwin C. Kan

School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14850, USA
* Correspondence: ps847@cornell.edu

Abstract: This work presents a study on users’ attention detection with reference to a relaxed
inattentive state using an over-the-clothes radio-frequency (RF) sensor. This sensor couples strongly
to the internal heart, lung, and diaphragm motion based on the RF near-field coherent sensing
principle, without requiring a tension chest belt or skin-contact electrocardiogram. We use cardiac
and respiratory features to distinguish attention-engaging vigilance tasks from a relaxed, inattentive
baseline state. We demonstrate high-quality vitals from the RF sensor compared to the reference
electrocardiogram and respiratory tension belts, as well as similar performance for attention detection,
while improving user comfort. Furthermore, we observed a higher vigilance-attention detection
accuracy using respiratory features rather than heartbeat features. A high influence of the user’s
baseline emotional and arousal levels on the learning model was noted; thus, individual models
with personalized prediction were designed for the 20 participants, leading to an average accuracy of
83.2% over unseen test data with a high sensitivity and specificity of 85.0% and 79.8%, respectively

Keywords: attention detection; radio frequency; vigilance; vital signs; wearable sensor

1. Introduction

Ambient intelligence and intelligent machine responses [1,2] have become increasingly
important in recent years, and both require an estimate of human cognitive reactions.
Attention detection is a subset of cognition assessment that can enable accident prevention
by warning when the user starts slipping into an inattentive state. This is important for
activities of daily living, including driving, as well as certain occupations, such as the
military [3,4], medicine, aviation, etc. With increasing numbers of work-from-home jobs,
such systems are even more important for individuals to monitor self-work fatigue and
take recuperative measures.

When people perceive a vast amount of information, a subset processing is prioritized
and extraneous irrelevant information filtered out, which is termed as attention [5]. It is a
basic function that simultaneously controls focus, vigilance, and response [6]. Two broad
attention types are endogenous and exogenous. The former is a top-down, goal-driven
voluntary process with the conscious expectation of events, while exogenous attention is a
bottom-up, sensory-driven, involuntary response. The attention time course can last for a
short duration (a few milliseconds) to longer periods (a few seconds or minutes), termed
as sustained attention or vigilance [7]. Some long-term tasks, commonly associated with
workplaces, require vigilance, and may result in mental and physical fatigue.

The literature is abundant in the study of attention-related concepts, including alert-
ness, fatigue, and engagement. Engagement is closely related to attentional involvement
with a task, mainly detected using facial expressions [8,9]. Fatigue induced drowsiness
impacts attention by decreasing the ability to suppress irrelevant information, leading
to increased reaction times [10,11]. With more than 300,000 drowsy-driving crashes each
year [12], numerous research works have made significant efforts towards driver fatigue
and sleepiness detection [13], primarily using change in the blink rate, percentage of eye
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closure (PERCLOS), facial expression, and voice features, all of which are typical indicators
of arousal level [14]. Thus, camera-based technologies including video, audio, and infrared
(IR) illuminators, play a major role in observing the psychological condition [15]. This
setup is feasible in confined spaces, with a fixed relative user–sensor position; however, it
may be impacted by environmental factors including ambient noise, poor illumination, or
even sunglasses [16,17].

Compared with audio–visual responses for psychophysiological monitoring, invol-
untary reactions, such as variation in brain waves, heartbeat, respiratory patterns, skin
conductance (SC), and skin temperature (ST), can be more objectively measured. In gen-
eral, the electroencephalogram (EEG) has been extensively used to understand cognitive
conditions including attentiveness, with Liu et al. achieving 76.8% accuracy [18]. While
EEG frequency bands contain important information to detect sustained or selective atten-
tion [19], degree of inattentiveness is more difficult to identify [18]. Electrooculography
(EOG) can measure long blink durations and slow eye movements, which are indicators
of sleepiness and reduced attention [20]. Furthermore, SC, measured from electrodes on
fingers or hands has also been used for mental workload assessment [21]. Heart rate
(HR) and heart rate variability (HRV) allows study of fluctuations in the sympathetic and
parasympathetic nervous systems (SNS, PNS, respectively) and, thus, have been used
extensively with good performance [22]. The changes in HRV, blood pressure, and palm ST
have been utilized for drowsiness detection [23]. Additionally, the ECG reliably captures
high-quality heartbeat signals, but all these electrode-based sensors face similar setup is-
sues, in that they have a skin-contact requirement and are uncomfortable, despite advances
in dry electrodes and wireless setup. A photoplethysmogram (PPG) from a wrist-band
is a more comfortable, long-term alternative to ECG; however, it has limited accuracy in
comparison [24]. Respiration has been hypothesized to be impacted by attention and stress
levels and, in turn, might impact these [25] due to unique dual autonomous and voluntary
nature. Breathing may capture similar features as HRV, since they are linked by respiratory
sinus arrhythmia (RSA) [26]. However, this has been studied less due to the uncomfortable
monitoring with thorax and abdominal tension belts or a nasal cannula. Few works have
studied its link to emotion [27,28] and attention [29]. The best performance can be achieved
with a simultaneous multi-sensor unit, which may be inconvenient due to multiple-point
skin contact electrodes and headband [30].

This work proposes a study of attention using a noninvasive radio-frequency (RF)
sensing technology [31] that detects both respiration and heartbeat motion with high
comfort and minimal distraction. Our near-field coherent sensing (NCS)-based RF sensor
couples strongly to the near-field motion of heart, lungs, and diaphragm, clearly capturing
every heartbeat, inspiration, and expiration duration with high resolution, without any
impact of ambient motion [32]. In comparison, the existing RF sensing techniques measure
reflection from the body surfaces [33], mainly consisting of respiration motion, which
is 10× heartbeat surface motion [34]. The reflected signal is also easily interfered with
due to ambient motion that needs to be suppressed by advanced hardware and signal
processing techniques [35,36]. Naturally, the existing RF technique has limited use for a
fixed home-based setting with one user, as it is difficult to decouple vitals and associate
them with users without added directionality sensing.

We have evaluated our sensor and feature extraction for attention vs inattention classi-
fication on 20 healthy participants. Two RF sensors were worn at the thorax and abdomen
levels to monitor heartbeat, thorax, and abdominal respiration during the inattentive and
engaged-attentive states. A Mackworth clock task was used in the attention routine [37] to
estimate vigilance, which mimicked scenarios where the user needed to be continuously
attentive, such as in driving or guarding. Cardiac and respiratory features were extracted
from the collected waveforms and fed into the machine learning (ML) model for classi-
fication. A questionnaire at the end of the study revealed varying baseline arousal and
emotional states including calmness, drowsiness, and anxiety. The major contributions of
this work include the following:
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1. A touchless RF sensor that measures both cardiac and respiratory waveforms, with
on-par attention detection performance as the reference chest tension belts and ECG
together. The improved comfort and convenience can reduce the systematic bias and
improve the applicability;

2. Both cardiac and respiratory variability features were employed to derive the attention
status every 10 s by a learning model, which were more accurate than the individual
cardiac and respiratory features;

3. The critical role of personal baseline training was examined.

Section 2 presents the RF sensor and experimental setup. The algorithm for feature
extraction is discussed in Section 3. Results are presented in Section 4, followed by the
discussion and conclusions.

2. Experimental Design
2.1. Sensor Setup

The hardware setup included two over-the-clothes RF NCS sensors placed at the
thorax and abdomen levels on the midline, as shown in Figure 1a,b. The wired RF sensors
were held in place by belts, with no tension requirement. The newer lightweight Bluetooth-
enabled design allows for a more comfortable alternate placement [38]. The heartbeat
signal was generally stronger in the thorax sensor, as it was placed closer to the heart.
The abdomen sensor had a stronger lung and diaphragm motion. Figure 1d shows the
typical heartbeat and respiration waveforms extracted from the NCS sensors. The sensor
prototypes are implemented using a software-defined radio (SDR) transceiver by Ettus
Research [39], operating at 1.82 GHz and 1.9 GHz with <−10 dBm power. A detailed
description was presented in our previous work [32]. The reference sensor setup included
a three-electrode ECG, and thorax and abdomen chest belts by BIOPAC [40]. Notice that
ECG electrodes required conductive gel pads with bare skin touching, and that the chest
belts needed reasonable tension to capture the full respiratory motion.
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Figure 1. (a) Setup showing NCS RF sensors near the heart and diaphragm, and reference thorax
and abdomen chest belts and ECG. (b) A subject wearing the setup, with wired NCS sensors. Newer
version enables Bluetooth data transfer. (c) A 30 s segment showing raw respiration and heartbeat
modulation on NCS signal. (d) Filtered and normalized heartbeat and respiration extracted from the
NCS thorax and abdomen sensors, respectively.
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2.2. Protocol

The protocol included two routines in seated posture, namely relaxed inattentive-
ness (R) and vigilance-attention (A). In the former, participants were asked to relax with
eyes closed for 5 min, maintaining a state of inattentiveness. The next routine involved a
stimulus-driven attention task, demanding sustained vigilance during a modified Mack-
worth clock game [37]. A rotating clock hand was shown on the computer screen and
participants were expected to respond to larger clock hand jumps by pressing the spacebar.
A maximum reaction time (RT) of 1 s was allowed. The entire 6.5 min routine included
some instructions and a trial run of 1 min, followed by same vigilance task for 5 min, and
finally 30 s looking at the screen for potential future instructions. As participants were
expected to be attentive during the entire 6.5 min routine, the entire duration is considered
as an attention routine. The routine was designed using PsyToolkit software [41] which
showed a clock hand rotating by a fixed step of 3.6◦/s. The probability of a longer rotation
of 5.4◦ at each step was set as 0.1. An indicator at the center of the clock gave instanta-
neous feedback of incorrect, missed, and correct responses by red, red, and green lights,
respectively. Figure 2 shows different possible clock states during the task.
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Figure 2. Different clock hand status during the attention task. (a) Normal clock rotation; (b) abnormal
clock rotation, after correctly detection by user; (c) incorrect user response due to missed abnormal
rotation or spacebar press for a normal clock rotation.

The experimental study was approved by the Cornell Institutional Review Board
(IRB) and conducted with the written consent of the participants. Data collection was
performed on 20 healthy participants including 12 female and 8 male subjects. The age
range was 18–34 years, with BMI in the range 18–27 kg/m2. An end-of-study questionnaire
noted participants’ feelings of stress, relaxation, calmness, anxiety, and alertness during
both routines.

3. Data Processing and Feature Extraction
3.1. Sensor Data Preparation

Our setup collected timestamp synchronized NCS and BIOPAC data, along with the
information of each clock hand step and keypress RT. The NCS respiration and heartbeat
waveforms were modulated on the baseband RF amplitude and phase waveforms, and were
extracted by filtering [42]. For respiration, low-frequency baseline variation was removed
with an order-5 Butterworth filter and 3 dB cutoff frequency ( f3dB) of 0.05 Hz. A low-pass
FIR Kaiser-window filter was used to suppress high-frequency heartbeat waveforms over
0.8 Hz. The resulting waveform was further processed by subtracting the mean of the first
60 s of data, followed by normalization using RMS of the same duration. Similarly, the
heartbeat waveform was extracted by a third-order high-pass filter with 0.7 Hz f3dB and a
similar low-pass filter with 1.9 Hz cut-off. These filters allow measurement of respiration
rate (RR) and heart rate (HR) in the ranges of 6–40 and 45–115 breaths or beats per minute
(BPM), respectively, well over the normal resting range. All vitals were down-sampled to a
uniform sampling rate, fs = 100 Hz before feature extraction.

3.2. Dual-Point NCS Measurement

As discussed earlier, we had a two-sensor placement that measured heartbeat primarily
from the thorax and respiration from both thorax and abdomen sensors. Furthermore, vital-
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sign modulations were observed in both amplitude and phase of the baseband RF signal.
Thus, the NCS signal entropy, was high with four signal sources (thorax amplitude, thorax
phase, abdomen amplitude, and abdomen phase) for respiration and heartbeat waveform
extraction. This redundancy was particularly useful when external motion artifacts are
present, which would not affect all four channels in a similar manner. A signal-to-noise
ratio (SNR) estimate was defined to identify the signal with the best quality. Signal and
noise powers were estimated from the periodogram of power spectral density after baseline
removal ( f3dB = 0.08 Hz). SNR was derived as follows:

SNR = 10 · log10
Pf1

Pf2 + Pf3

, (1)

where Pf 1 indicates the power in the desired signal frequency band f1, and Pf 2 and Pf 3
are the noise bands after filtering. For heartbeat, f1 is [0.8, 2] Hz, f2 is [0.05, 0.8) Hz, and
f3 is (2, 50] Hz, where fs/2 = 50 Hz is half of the sampling frequency. For respiration, f1
is [0.1, 0.7] Hz, f2 is [0.05, 0.1) Hz, and f3 is (0.7, 50] Hz. Here, we have not differentiated
between intensity of thorax and abdomen breathing, and the waveform with the highest
SNR was selected for feature extraction.

3.3. Feature Extraction
3.3.1. Heart Inter-Beat Interval Detection

The HR is not stationary over time, and its variability contains valuable information
about the SNS and PNS response [43]. Figure 3a shows the frequency domain characteristics
of the NCS thorax waveform between [0.5, 2.5] Hz, visibly showing variable HR in the
range of [55.8, 62.4] BPM. To accurately extract the inter-beat interval (IBI) from the smooth
NCS signal, a weaker, but sharper second harmonic heartbeat component of the heartbeat
was used [32] and IBI was measured as the time for two cycles, as denoted in Figure 3b. This
process resulted in very accurate instantaneous HR estimation compared to the reference
ECG as shown in Figure 3c. Note that ECG measures the electrical stimulation while NCS
measures the actual heartbeat motion. The peak points in the waveform were extracted by
a robust algorithm using the intersection of the moving average curve (MAC) [32].
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Figure 3. (a) Frequency spectrum of NCS thorax waveforms during the relaxation routine of 5 min
showing variable HR in the range [0.93,1.04] Hz, indicated by the dashed green lines. Similarly, the
second harmonic of heartbeat is also distributed around 2 Hz. (b) Second harmonic NCS heartbeat
waveform, where IBI is taken as the time for two cycles. (c) Instantaneous HR (60/IBI) in BPM
from NCS and ECG showing high correlation. The HR shows strong variation from 50–80 BPM in a
resting state.

3.3.2. Respiration Waveform Extrema Detection

To investigate the correlation between heartbeat and respiration, we have designed
statistical features representing respiration waveform variability (RWV) utilizing inspira-
tion, expiration, and respiratory effort information. The peaks in respiration waveform
were extracted by the same MAC algorithm. For respiration, maxima peaks represent
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the end of inspiration, termed as inspire-end points, te. The beginning of inspiration is
represented by the inspire-begin point, tb, which is more difficult to accurately capture
using a minima-detection algorithm. We attribute this to the following reasons: (1) a longer
exhalation breath pause leading to relatively flat waveform; (2) filter artifacts can change
the true minimum, especially around pauses; (3) unfiltered small heartbeat or pulse motion
can result in multiple local minima. Thus, a post-processing approach was employed to
identify true tb, as follows:

1. Find zero-crossing (ZC) points of the first derivative (ZC1) and second derivative
(ZC2) of the respiration waveform r(t) between consecutive inspire-end peaks, te
and te−1;

2. Select only positive slope points of ZC2 (ZC2+), with the first-derivative close to
0 (ZC0

2+);
3. Identify all such points b ∈{ZC1, ZC0

2+} as possible minima if r(te)− r(tb) > 0, and(
max

b
r(te)− r(tb)

)
/
(

min
b

r(te)− r(tb)

)
< 2.

a. If all are minima, select the point closest to inspire-end: b that gives min
b

(tb − te).

b. Otherwise, select the minimum point b that gives min
b
|r(tb)|.

This results in an accurate tb corresponding to each te to define the respiratory features,
allowing independent study of inspiration and expiration variability which has not been
explored in detail in earlier works [44]. Figure 4 shows the respiration waveform anno-
tated with the detected tb and te along with corresponding inter-respiration interval (IRI),
inspiratory interval (II), expiratory interval (EI), and inspiratory volume (IV) estimations
for individual breath cycles.
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Figure 4. NCS respiration waveform showing different features. The maxima and minima represent
inspire-end (te) and inspire-begin (tb), respectively. IRI = te − te−1 , II = te − tb, EI = tb − te−1, and
IV = r(te)− r(tb). Accurate inspire-begin point is estimated for a difficult case with a pause after
exhalation at t = 162 s.

3.3.3. Heartbeat and Respiratory Features

The detected heartbeat IBI and respiration IRI, II, EI, and IV parameters were used
to calculate features over each windowed segment. Both R and A routines were divided
into 90 s windows (twin), or epochs, with a 10 s sliding interval (tslide) over which ultra-
short HRV [45] and RWV features were estimated. For HRV analysis, standard time and
frequency-domain metrics were derived from NCS and ECG, as follows:

1. The mean(HR), mean(IBI), and std(IBI) are the mean and standard deviations of HR
and IBI, after rejecting poor IBI values;

2. The pIBI50 is the ratio of successive IBI counts that differ by more than 50 ms to the
total IBI count, closely related to PNS activity;

3. The LF, HF, and LF/HF are the power in low-frequency (LF:0.04–0.15 Hz), and
high-frequency (HF: 0.15–0.4 Hz) indicating a balance between the SNS and PNS
activity [22].
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The RWV features included mean and standard deviation of IRI, II, EI, and IV, their
first and second successive differences (SD1, SD2) and the ratio of EI/II that is known to be
related to the stress level [46]. The RR was also estimated as a function of the mean(IRI)
over 15 s. All 36 RWV and 7 heartbeat features are listed in Table 1. The RWV features were
estimated from the highest SNR NCS respiration and reference chest belt waveforms. The
nonlinear entropy-based features were found to be unreliable with high dependence on the
sample size [47], and were not included.

Table 1. HRV and RWV classification features.

Signal Derived-Features

Heart (HRV) HR∗, IBI∗†, pIBI50, LF, HF, LF/HF
Respiration (RWV) II∗†, EI∗†, IRI∗†, RR∗†, IV∗†,

(
EI
II

)∗†
, [SDi(y)]

∗†η

Here, x∗ is mean(x), x† is std(x), xη is mean (x)/std(x) , y is {II, EI, IRI, IV}, and i = {1, 2}.

In Figure 5a, we present the correlation plot between NCS and ECG IBI data, achieving
a high Pearson’s correlation coefficient r = 0.961. The Bland–Altman plot in Figure 5b
presents high agreement between the two measurements. The X axis is the average of
the two data, and the Y axis is the difference. The middle-dotted line at −0.003 s shows
a low mean (m) bias. The other lines show limits of agreement (LoA), within which 95%
of the differences are expected, calculated as m ± 1.96 · σ. Similarly, Figure 5c,d shows
the scatter and Bland–Altman plots between NCS and the reference IRI. High correlation
between NCS and the reference heartbeat and respiratory features confirms the accuracy
and robustness of our system. Low m and narrow LoA indicate small, uncorrelated errors
between NCS and reference estimates.
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Figure 5. Comparison of NCS and reference IBI and IRI data from all participants during relaxed–
inattention and attention routines. (a,c) The IBI and IRI scatter plots with denoted Pearson’s correla-
tion coefficients; (b,d) The Bland–Altman plots showing the mean difference m at the center dotted
line and the corresponding LoA.

4. Results

In this section, we present accuracy statistics of NCS-based inattention vs attention
detection. The current literature has mostly focused on HRV-based emotion and fatigue
detection, due to high sensor reliability and higher comfort than the use of tension chest
belts for the study duration. Here, this gap is closed with an additional performance
comparison of respiratory and cardiac features. To further characterize users’ attentive
state, correlation trends between probability of correct response (PoCR) and RT are pre-
sented for the short study duration. Furthermore, MATLAB toolboxes have been used
for the following analysis. Figure 6 presents the system architecture flowchart, including
(a) signal processing and feature extraction, and (b) the machine learning algorithm for
attention detection.
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Figure 6. Flow charts representing our signal processing and ML system architecture. (a) Signal pro-
cessing and feature extraction. * IBI is extracted from second harmonic heartbeat, requiring re-filtering
of the highest SNR waveform around the dominant HR frequency; (b) ML model validation process.

4.1. Attention and Relaxed—Inattention Classification

For epoch-based analysis, the initial 10 s of R-routine data was rejected to allow
participant to settle, reduce motion artifacts in data, and account for any potential delay in
achieving the inattentive-relaxed state. For simplifying the current analysis, participants
were suggested to stay stationary as much as possible, and early truncation was performed
for two participants to reject poor motion artefact data. Thus, 290 s and 390 s were extracted
from R and A routines from all participants, except for participants 3 and 12, with 370 s
and 220 s A-routine data, respectively.

While we have a limited dataset of a small epoch size, this higher time resolution is
advantageous, as a user’s sudden inattentiveness may be detrimental to the task. For atten-
tion vs relaxed–inattention classification, we tested two approaches, as follows: (1) leave
one subject out, and (2) a personalized prediction model. A fixed algorithm was selected by
5-fold cross-validation (CV) for consistent comparison across both approaches. The kNN
classifier achieved the best accuracy for binary attention vs relaxed inattention classification
for each 90 s epoch, compared to SVM, QDA, and boosted and bagged tree algorithms, as
shown in Table 2. The NCS and reference achieved similar accuracies of 98.2% and 98.5%,
respectively, using all the described features in Section 3.3.

Table 2. Classification algorithm comparison.

Algorithm CV Accuracy (%) Sensitivity (%) Specificity (%)

NCS BIOPAC NCS BIOPAC NCS BIOPAC

SVM 94.8 94.2 92.0 92.2 96.7 95.5
QDA 91.2 88.4 82.2 75.0 97.4 97.6

Boosted Tree 97.6 96.8 96.8 94.5 98.1 98.4
Bagged Tree 96.4 96.9 95.2 95.2 97.2 98.1

kNN 98.2 98.5 97.5 97.8 98.6 99.0

Using the kNN model, the leave one subject out test resulted in an accuracy drop to
59.8% and 60.5% for NCS and the reference, respectively. This suggested a high personal
baseline influence on the model, which has been consistent with other works in area [48].
In the second approach, personalized prediction models for each user were designed using
a small subsection of data for training and remaining out-of-time data for testing. The
beginning 180 s of data from both routines were used for training, with no time overlap
between the training and test epochs. A smaller A-routine training duration was selected
for Participant 12 to have one test epoch. A 50% holdout of training data was used for
validation and tuning. Good test accuracies of 83.2% and 80.0% were achieved by NCS
and the reference, respectively. Figure 7 shows the test accuracy distribution across all
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the participants. Detailed results for individual participants are in Table 3, showing 85.0%
average sensitivity and 79.8% average specificity for classification by NCS.
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Table 3. Personalized prediction model performance across subjects.

Subject ID
Test Accuracy (%) Sensitivity (%) Specificity (%)

NCS BIOPAC NCS BIOPAC NCS BIOPAC

1 100 100 100 100 100 100
2 100 85.7 100 100 100 83.3
3 33.3 83.3 100 100 20 80
4 100 100 100 100 100 100
5 100 100 100 100 100 100
6 100 100 100 100 100 100
7 21.4 21.4 100 100 8.3 8.3
8 100 85.7 100 0 100 100
9 71.4 100 100 100 66.7 100

10 85.7 85.7 0 0 100 100
11 100 100 100 100 100 100
12 66.7 66.7 100 100 0 0
13 57.1 57.1 100 100 50 50
14 100 35.7 100 100 100 25
15 57.1 28.6 0 0 66.7 33.3
16 71.4 64.3 0 0 83.3 75
17 100 100 100 100 100 100
18 100 85.7 100 0 100 100
19 100 100 100 100 100 100
20 100 100 100 100 100 100

Mean 83.2 80.0 85.0 75.0 79.8 77.8

We have attributed the test performance drop for some participants to variation in
A and R levels over time. This is also consistent with the participant reports of varying
attention levels over time. For example, Participant 7 reported, “I maintained the same level of
relaxation throughout the relaxation phase, but at the attention phase, I was more attentive at first,
but slowly got less so towards the end.” Some subjects felt increased drowsiness, according
to Participant 14, “I feel [felt] relaxed throughout the relaxation test phase, and slightly sleepy
towards the end. During the attention test phase, I felt alert and slightly stressed as I got a couple
wrong. Towards the end of the attention phase, I felt a little tired/hypnotized from looking at the
small movements of the clock hand.”
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4.2. Cardiac and Respiratory Feature Comparison

To understand the individual contribution of respiration and heartbeat features, classi-
fier performance was tested with only one feature set at a time. This resulted in a higher
average 5-fold CV accuracy of 97.7% from the RW model compared to 89.8% from the
HRV model by NCS. A similar trend was observed with the reference ECG and chest belt
sensors showing 96.9% and 86.7% accuracies using RWV and HRV features, respectively.
Figure 8 shows confusion matrices for NCS with all features and only HRV features in
Figure 8a,c, compared to the reference BIOPAC in Figure 8b,d. The NCS RWV-only model
(97.7%) performed very close to the model using both RWV and HRV feature sets (98.2%),
which suggests high attention-specific information in RWV features and overlap between
RWV and HRV feature information. A potential reason for this is RSA coupling between
respiration and heartbeat. The signal quality between RWV and HRV may play a role as
well, as well as the small time duration for frequency-domain features.
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4.3. Participant Response Characterization

As an extension of attention versus relaxed–inattention detection, we also investigated
the response characteristics of participants during the attention routine to search for the
correlations or trends among PoCR, RT, and HR. As the respiratory features have longer
periods than the cardiac ones, we have selected HR for the study of short-term variation
around each event.

The first metric compares variation in average HR over both routines vs the RT of each
participant. A ratio of average HR during the A and R routine (mean(HRA)/mean(HRR)) is
plotted as a function of average RT (mean(RT)) for each participant in Figure 9a. Within the
limited number of participants, we observed an increasing trend in the ratio mean(HRA)/
mean(HRR) > 1 as mean(RT) approached 500 ms, and then gradually lowered to around 1
for the higher mean(RT). An increase in HR could be associated with an increased stress or
surprise. Thus, quick responses with mean(RT) < 475 ms and <1 ratio are likely associated
with low stress, followed by an elevated stressed response, before the ratio dampened out
to ~1 with high RT. Here, the mean(RT) excluded the missed response cases with a fixed
maximum RT.
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Figure 9. (a) Average HR change from the R to A routine as a function of RT; each circle represents a
participant. (b) Trend analysis for each event across all participants. The PoCR is a function of RT for
individual events. Trends of mean(HRPost/HRPre) for each event with two window sizes of 5 s and
10 s are shown in blue lines. The RT histogram across all events is shown with purple bars.

The second metric takes correctness of response into account, in addition to RT. An
event is described as any correct or incorrect user response towards the clock jump. The HR
estimated in pre-event and post-event window sizes of 5 s and 10 s was used to calculate
HRPost/HRPre for each event. The RT intervals associated with all events were distributed
in 100 ms bins, and mean(HRPost/HRPre) metric was estimated along with PoCR in each
RT bin, as shown in Figure 9b. Here, PoCR is defined as fraction of correct events out of
total events. It is observed that mean(HRPost/HRPre) [5 s] < 1 with RT ∈ [200, 400) ms,
with similar trends for both window sizes. As RT increased to a range of [400, 600) ms, the
PoCR oscillated around 0.9 with a slightly elevated mean(HRPost/HRPre), which stabilized
for the higher RT. In other words, when a participant was expected to be in an attention
state, the following scenarios could be expected:

1. A very quick reaction (RT ≤ 200 ms) had a high probability to be incorrect;
2. A moderately fast response with RT ∈ [250, 350) ms indicated a high PoCR and

mean(HRPost/HRPre) ~ 1. This can be considered as the period when the user mas-
tered the game with full attentiveness. However, (1) and (2) have small numbers of
events (1 and 35, respectively), and the deduction can only be viewed as preliminary;

3. Most RTs were in the range of 400–600 ms. Interestingly, RT > 400 ms was associated
with a stable PoCR ~ 0.9 and mean(HRPost/HRPre) ~ 1. This indicates that slower RT
events were not necessarily incorrect. This is an interesting observation and could be
due to RT not being a judgment criterion for participants.

5. Discussion

In Table 4, we compare this work with the previous monitoring systems [8,49–52]
based on different cognition models, sensor inputs, algorithms, and accuracy achieved.
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The EEG and ECG have been used most frequently to evaluate physiological signals for
cognitive monitoring; however, both require contact electrodes. Our work is based on
the simultaneous extraction of respiratory and cardiac features with an over-the-clothes
sensor and can achieve relatively high accuracy in addition to deployment convenience
and continuous long-term monitoring. Unlike existing RF technologies, this sensor is not
affected by ambient motion and does not require the user to be in isolation [32].

Table 4. Comparison of this work on attention and cognition monitoring with previous methods.

Reference Cognition Model Sensor Input Algorithm Accuracy (%) Other

Belle 2012 [49] Attention
ECG Random forest 77.0 {Se, Sp}: {66.7, 87.2} %

EEG Random forest 85.7 {Se, Sp}: {79.7, 91.7} %

Stancin 2021 [50] Drowsiness EEG XGBoost 59.4 Pr: 59.0%

Barua 2019 [51] Driver sleepiness EEG, EOG, Contextual SVM 93.0 {Se, Sp}: {94.0, 92.0} %

Monkaresi 2017 [8] Engagement Video based facial
expressions and HR Naïve Bayes - ROC AUC: 75.8%

Patel 2011 [52] Driver fatigue ECG HRV Neural
network 90.0

This work Attention NCS HRV and RWV kNN 83.2 {Se, Sp}: {85.0, 79.8} %

Abbreviations are as follows: AUC, area under the curve; Se, sensitivity; Sp, specificity; Pr, precision.

The personalized prediction model results in Section 4.1 shows our ability to detect
participant’s attentive or relaxed–inattentive states over a 90 s window, when trained over
a short duration baseline (3 min for each state). This high-resolution detection can allow
for monitoring changes in user’s attentiveness over time. Moreover, our results indicate
superior performance of respiratory features for vigilance-based attentive state classifica-
tion. The nonintrusive, low-cost feature of this sensing technology allows exploration of
respiratory signal features with ease for other purposes, unlike a chest belt, which requires
sufficient tension, and a nasal flow meter, which is highly intrusive.

We also explored change in sustained attention over the test duration, as shown in
Figure 10. Here, attention level is defined as a relative ratio of (C −W −M)/(C + W + M),
where C, W, and M are correct, wrong, and missed events, respectively. The box plot in
Figure 10 show distribution of attention level across participants as time progressed, with
each scatter point showing individual participant value. We can observe a slightly lower
median value and higher inter-quartile range (IQR) during the initial trial phase and after
~4 min. The trend is reasonable since it took initial 1–2 min for participants to learn the
game and then they got drowsy or tired as the game continued for a longer period, based
on the reviews noted earlier. This definition of attention has limited scope as it does not
include RT, which is shown to be related to attention and fatigue in earlier work [53].

The studies limitations are as follows. A major limitation of this study regards the
ground truth of attentive and relaxed inattentive states. While we have used an established
vigilance-based attention task, multiple participants reported feeling drowsy towards the
end due to the monotonous nature. Attention can be interpreted differently as short or
sustained attention, and at times may only involve thinking without a quick RT require-
ment. All these cases may induce different features and may not be generalizable by this
model. Further, a relaxation inducing routine is likely dominated by the baseline partic-
ipant’s feeling of being stressed, happy, or any other emotion that can impact heartbeat
and respiratory features differently. This is indicated by the poor leave one subject out
performance in this work. In earlier work [48], the baseline variation for one user was
studied over multiple weeks, which showed more variation in day-to-day versus each emo-
tion on the same day. Hence, this is an important limiting factor in the attention research
domain. Another limitation is the small study duration. This could lead the model to learn
short temporal similarity instead of being generalized to minor variability in relaxation
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or attention levels. It is important to train with optimized features over longer duration
and observe performance variation over time for same individual. Lastly, while sensor
performance has been established in previous works, it needs to be validated over more
age, BMI, and health condition diversity.
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The following future work should be carried out. The future research efforts should
bridge the gap between emotion and attention monitoring by utilizing both HRV and
RWV features from the NCS sensor which can also be integrated into the furniture [54]
without the participant being aware of their being monitored. This covert sensing will
reduce the distraction and nervousness of the participant and, thus, decrease the systematic
bias. Furthermore, our sensor can offer critical information for studying RSA, voluntary
respiration manipulation, and their effect on cardiovascular [55] and skin conductance
changes [56]. This area of research has also been associated with beneficial effects on mental
and physical health [57]. Thus, we believe that our sensor hardware and classification
algorithms have multi-fold benefits and are valuable in the context of comprehensive
healthcare by offering comfortable continuous vital-sign information.

6. Conclusions

In this paper, we have demonstrated the use of a noninvasive wearable sensor setup
for detecting the relaxed–inattentive vs attentive state of a user. This can pave the way for
large-scale future studies, that can potentially mitigate risk factors for life conditions, such
as driving, as well as daily cognitive monitoring of elderly patients with dementia. We
showed strong reliability of the NCS sensor for cardiac and respiratory variability feature
extraction compared to the standard reference ECG and chest belts. Our results indicate a
major contribution from the respiratory features for attention detection. To the best of our
knowledge, this is the first work using noninvasive respiratory sensing for attention and
relaxation-inattention classification from accurate estimates of respiratory features, such as
II and EI.
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