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Existing hand gesture recognition systems
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Camera-based?
Occlusion
Complex
Privacy
Latency 

Motion-based?

Bulky on finger and hand

Only surface motion 

sEMG-based?

Direct skin contact

Ambiguity

Numerous electrodes

Gloved-based?

Hinder hand motion

Inconvenient 
Uncomfortable
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RMG (radio-myography) for muscle activity sensing
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(a)

(b)

(c) (d)

Tx2Tx1 Tx3 Tx4

RX1 RX2 RX3 RX4

Multiple-input multiple-output (MIMO) 
near-field coherent sensing (NCS) radio sensor
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Extensors 
On Posterior side

Flexors
On Anterior side

(c)

G +
-

sEMG

Wrist

BoxNotch

(a) (b)

(d)

(e)

RAM

Touchless

continuous muscle actuation sensing that can 
be wearable and touchless, capturing both 
superficial and deep muscle groups.
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Study protocol and data processing 4

Basic Gesture

Point 

Thumb

Point 

Index

Point Ind. 

+Mid.

Point 4 

Finger

Grasp Wrist Up Wrist Down Fist Rest

Quick P1 P2 P23 P4 G U D

Quick Double P1 2 P2 2 P23 2 P4 2 G 2 U 2 D 2

Slow sP1 sP2 sP23 sP4 sG sU sD sF R

23 hand gestures used in the study protocol
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 K, Samples 

t, Time Points

 K, Samples

STFT 

(2) 

CWT

(3)

RMG

Raw 

data

1. Augment

2. Filter

3. Normalize

4. Segment

data pre-processing

(a) (b) (c)

8 participants 
5,847 samples 
23 gestures

Each gesture is segmented into 5s time window

1D time series 
To
2D spectrogram
1. STFT
2. CWT
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Classification results 
using deep learning 
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personal training model

7-fold CV

Model: 
Vision transformer 

Overall accuracy=99.0%
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Classification results 
using deep learning 
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Model: 
Vision transformer 

Overall accuracy=96.6%

Transfer learning on the unseen 
participant by 1/5 of new data.

Pre-train on 
general model

Fine-tune by 
few cases of 
new participant
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Analysis on classification results 7

(a) (b)

(c) (d)

personal training model

Transfer learning for unseen users 

Vision 
Transformer 
outperformed 
CNN

Ensemble 
boosts 
accuracy
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Benchmark with sEMG 8
G +

-

sEMG

Quick SlowDouble Quick

Time (s)

RMG and sEMG waveforms for various gestures by DTW averaging on all samples

Exp: 1 2 3 µ

RMG 99.0
%

98.5
%

98.7
%

98.7
%

sEMG 68.2
%

70.8
%

66.7
%

68.6
%

Accuracy comparison 

of RMG vs. sEMG

(a) (b)

1. High temporal correlation 

2. Consistent time lag
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(c)

G +
-

sEMG

Wrist

BoxNotch

(a) (b)

(d)

(e)

RAM

Timing Test

150 beats/minute

µ σ

RMG 0.40 s 38 ms

sEMG 0.40 s 55 ms

Variation in 
experimental design

Timing and latency

Notch
(a)

Box
(b)

Wrist
(c)

Accuracy 
(%) 99.0 97.4 95.8

Sampling rate:
Camera: 60 fps  RMG: 1M sps
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Comparison of RMG to previous HGR works.
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Li

2019 [11]

Liao

2021 [19]

Ma

2019 [20]

Zhang

2016 [17]

Savur

2016 [4]

Qi

2020 [25]

Côté-

Allard

2019 [40]

Moin

2021 [23]

This

work

Class 8 9 6 8 27 9 7/18 13/21 23

Subject 5 8 - 4 1 - 17/10 2 8

Sensor

setup Camera
Visible

light

Solar

light

FMCW

Radar
sEMG sEMG sEMG sEMG RMG

Algorithm CNN kNN kNN CNN Ensemble GRNN ConvNet Neural ViT

Accuracy
98.5% 96.1% 96.0% 96.0% 79.4% 95.3%

98.3% (7)

69.0% (18)

97.1% (13)

92.9% (21)
99.0%
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Applications in Human Machine Interface
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virtual reality gesture control

Hand gesture recognition system 

Smart device control Virtual object manipulation


