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Abstract—This paper presents radiooculogram (ROG), a novel 

sensor for non-invasive eye movement (EM) monitoring with eyes 

closed. We have experimentally demonstrated accurate 

measurements of EM frequency and directions for 5 participants 

and benchmarked ROG with electrooculogram (EOG). Compared 

with biopotential-based sensors, ROG has higher user comfort due 

to touchless operation and can capture direct muscle activity even 

in deep tissues. This work on voluntary EM sensing can serve as 

the baseline implementation for eventual sleep rapid EM 

monitoring.     
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I. INTRODUCTION  

Eye movement (EM) measurement can derive profuse 
information in emotion perception [1], neurodegenerative 
diseases [2], and monitoring of sleep and dream stages [3]. It can 
also facilitate human-computer interface (HCI) and virtual 
reality (VR) applications [4][5]. Current eye tracking systems 
with eyes open by camera-based methods can achieve high 
accuracy, though still have concerns of privacy, complexity, and 
occlusions [6][7]. Sensing EM with eyes shut under low ambient 
light can be even more difficult for cameras. EM sensing with 
eyes closed during sleep is important for the detection of rapid 
eye movement (REM), a sleep phase characterized by random 
rapid EM with an inclination of vivid dreaming. REM as an 
important sleep stage can be an indicator of health and cognitive 
performance, such as brain maturation [8], memory  
consolidation [9], and learning facilitation [10]. Existing 
methods for REM recording during sleep mainly used 
biopotential signals from electrooculogram (EOG) [11] and 
electroencephalography (EEG) [12], as parts of the clinical 
polysomnography (PSG) [13]. However, the electrode-based 
sensor can be limited by low user comfort and skin irritation as 
well as ambiguity and interferences due to skin potentials and 
leaky neural signals.  

Here we propose radiooculogram (ROG), a novel EM sensor 
based on radio-frequency (RF) signals that can accurately and 
non-invasively monitor internal eye muscle activities with eyes 
open or shut. We validated accurate measurement of EM 
frequencies and directions by a human study of 5 participants 
with selected longitudinal experiments. We further 
benchmarked ROG with synchronous EOG as the baseline 
comparison and physiological correlation. The main advantage 
of the proposed ROG system can be summarized as: 

• Improved user comfort. EOG and EEG measurements 
demand numerous electrodes around the eye region with 
stable electrical contact, which are inconvenient, 

uncomfortable, and prone to face motion interference. ROG 
can operate without direct skin contact. For example, ROG 
can be integrated into the eyeglasses frame or implemented 
as an insert or at an outer layer of a sleep mask or a 
masquerade. As no skin contact electrode is involved and 
ROG sensors just need to be at a constant place relative to 
eyes, both comfort and design freedom are enhanced. 

• Unmediated sensing of directional EM. While the 
biopotential-based sensors such as EOG, EEG, and 
electromyography (EMG) measure neural stimulus for 
muscle activity, ROG directly measures the muscle motion 
by coupling RF energy to deep internal muscles, i.e., muscle 
condition is the direct output, instead of an estimate derived 
from the measured stimulus. EOG and ROG can also be used 
together to retrieve the closed loop of stimulation and 
actuation.  

• Baseline for sleep REM detection. While camera-based 
methods are difficult to use for sleep REM, ROG has the 
flexibility to operate when eyes are open or closed without 
privacy concern. This work on conscious participants 
performing voluntary EM can formulate a validation 
baseline for future sleep REM monitoring.     

II. SENSOR SETUP AND EXPERIEMENT PROTOCOL 

A. Sensor Setup 

ROG is based on the near-field coherent sensing (NCS) 

[14][15] of ultra-high frequency (UHF) RF signals to monitor 

the dielectric boundary change of internal muscles during EM. 

Electromagnetic energy was coupled deep into the body by the 

near-field effect, and tissue motion was modulated on the 

channel characteristics. As shown in Fig. 1(a), one ROG sensing 

unit consisted of a notched miniature coaxial RF cable, where 

the metal shield of the 1-inch middle part was removed to allow 

a small amount of RF energy leaking into the user’s upper face 

region [16]. The ROG system integrated four sensing units 

attached to an eye mask around the eyes, as indicated in Fig. 

1(b). The ROG RF transceiver was implemented by software-

defined radios (SDR) to drive the notched sensors and to 

interface with the host computer through USB.  Two National 

Instrument Ettus B210 were used, each of which had two 

transmitter/receiver (Tx/Rx) ports as shown in Fig. 1(c). The two 

SDRs were synchronized by an external local oscillator (LO, 

BG7TBL-GPSDO) with 10 MHz reference and 1 PPS (pulse per 

second) baseband synchronization. The experimental setup on a 

user’s face was shown in Fig. 1(d) for ROG and in Fig. 1(e) for 

EOG. The ROG system can be alternatively implemented in 



wireless active [17] and passive [14] units, although the present 

prototype is a wired system for convenient benchmarking.   

In the near-filed region, the dielectric boundary change of 

associated eye muscles during EM would couple into the leaked 

RF energy, and hence affected the signals between Tx and Rx. 

Four sensors at different positions around the eyes provided 

more observation diversity to improve the amplitude and 

direction resolution. We adopted the multiple-input multiple-

output (MIMO) strategy to explore N2 = 16 coupling channels 

from N = 4 sensing units to further enhance the spatial diversity 

[18].  

 

The digital baseband of each Tx went through the digital-to-

analog converter (DAC) and was then mixed with the carrier 

frequency fRF, selected at 1 GHz. The RF power was less than 

−10 dBm or 0.1 mW, well under the safety limits set by 

Occupational Safety and Health Administration (OSHA). The 

RF signal leaked from the notched structure is coupled into 

internal muscle motion, received by Rx, and then demodulated 

and sampled by the analog-to-digital converter (ADC) to 

retrieve the baseband. The quadrature scheme was employed as 

the baseband tone fBB. The multiple Tx channels utilized 

frequency-division multiple access (FDMA) by setting fBB =10, 

25, 40, and 125 kHz, respectively, for Tx1−Tx4. The system 

was configured as 4 self and 12 cross channels, which were all 

sampled at 106 samples per second (Sps), and further down-

sampled to 500 Sps after demodulation. 

B. Human Study Protocol 

Two routines of human study on 5 volunteers were executed 

when eyes were closed. The ROG signals were similar with 

open eyes, but with interference from blinking. Blinking can be 

separately monitored by ROG as well, but not presented in this 

paper.  Routine 1 was for EM frequency detection when the 

participant followed voice instructions and exercised EM with 

10, 15, 20, 30, and 60 beats per minute (BPM). The eye exercise 

in each frequency had a duration of 30s with eyes moving left 

and right. Figs. 2(a)-(b) presented several examples of ROG 

(Tx3 – Rx3) and EOG waveforms. Participants were then 

instructed to move eyes in four directions in Routine 2. All 

directions had 2 versions of moving once and twice. Hence, we 

had 8 distinctive EMs, and each motion was performed in a time 

window of Twin =5s with around 24 repetitions. Unlike gaze 

localization with open eyes [19], the ground truth of EM 

direction and voluntary control of eyeball rotation were less 

precise when eyes were closed. 

C. Benchmark with EOG 

The reference EOG setup was by BIOPAC MP36R with the 
three EL513 electrodes around the eyes as + (under right eye), − 
(under left eye), and ground (left to left eye). ROG and EOG 
channels were synchronized in Labview and transferred to the 
host computer by USB. The same study protocol was performed 
on two participants with longitudinal iterations.   

III. SIGNAL PROCESSING  

A. EM Frequency Estimation  

For the EM frequency testing in Routine 1, the signal was 
first bandpass-filtered from 0.05Hz to 2Hz to remove the DC 
drift and high-frequency noises. Then we utilized the moving 
average-crossing algorithm to first extract a moving-average 
curve in a given window length, and then label local maximum 
and  minimal points [15]. The EM rate is estimated by counting 
the number of detected cycles over an epoch of 10s. One EM 
cycle includes moving eyeballs from left to right and then back 
to left. We have collected 16 quadrature channels from ROG, 
and each channel has amplitude and phase separately. We 
selected the channel with minimum covariance of the EM rate 
to output the final estimates. EOG was processed in a similar 
way, although there was only one channel in our setup.  Notice 
that the EOG here was for baseline comparison, and not a state-
of-the-art system in the EOG research field. 

B. EM Direction Estimation  

For the EM direction testing in Routine 2, after obtaining 1D 
time waveforms from 32 channels, we first applied bandpass 
filtering (0.05 Hz to 10 Hz) and normalization. The waveforms 
were then segmented into motion-based windows of Twin = 5 s, 
each containing one instructed EM.  We transformed the 1D 
waveforms to 2D spectrograms using continuous wavelet 
transform (CWT) by Morelet and Gaussian mother wavelets. 
Finally, the 2D image-like data was fed into the deep learning 
network as the classifier to differentiate all EM directions. We 
adopted vision transformer (ViT) [20], a deep learning model in 
natural language processing (NLP) and computer vision, for 
classification.  Other machine-learning models such as 
convoluted neural network (CNN) have been used on the time-
domain waveforms as well, but with slightly inferior 
performance. 

IV. RESULTS AND ANALYSES 

A. EM frequency estimation  

Fig. 2(c) shows the EM rate in BPM calculated from EOG 
(blue) and ROG (red) in comparison with the ground truth 
(green) from instruction in Routine 1. Fig. 2(d) shows the 
correlation of the EM rate from ROG (red markers) and EOG 
(blue markers) against the ground truth. In the left figure, both 
ROG and EOG achieved high correlation to the ground truth 
with Pearson coefficients denoted as rROG = 0.99 and rEOG = 0.98. 
In the right figure, the Bland-Altman plot presents the agreement 
by the mean (m) and limits of agreement (LoA). The X axis is 
the average of the estimation and ground truth, and the Y axis is 
the difference. Both EOG and ROG achieved low m and narrow 
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Fig. 1.  The ROG system. (a) One ROG sensor unit by a notched 
transmission line; (b) Four ROG sensor units on a mask; (c) The SDR 

transceiver; (d) ROG on a participant’s face; (e) EOG setup for 

baseline comparison. 
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LoA. Note that m is positive for both sensors, which implies that 
the ground-truth EM rate is higher than the estimated results. 
This is hypothesized that the participant may not perfectly 
follow the instruction especially for very fast EM at 60 BPM. 
Fig. 2(e) further presents the correlation between ROG and EOG 
in a similar format. In comparison with Fig. 2(d), correlation 
between ROG and EOG is higher than that to the ground truth, 
indicating higher consistency between the two sensors. Table I 
summarizes all correlation and B&A statistics of the EM rate 
using only ROG across 5 participants.  

 

We further compared the temporal correlation between ROG 
and EOG waveforms. We extracted the optimal time lag that can 
maximize the cross-correlation between the two waveforms. 
When the time lag = 0.032 s, cross-correlation achieves the 
maximum value of 0.96, which indicates that the ROG 
waveform has a time delay following EOG events, as EOG 
detects the neural stimulation of EM and ROG detects the actual 
EM. Table II presents the statistics of time lag and correlation 
between EOG and ROG in two subjects during longitudinal 
tests, where rR&E is the Pearson coefficient. The consistently 
high accuracy in the longitudinal studies, when the setup was 
refitted each time, suggests that the mask and sensor placement 
variation on the face may cause some waveform variations, but 
would not affect much on the extraction of EM rate and 
direction. Table III presents the correlation and B&A statistics 
of EM rate estimation using ROG and EOG in comparison with 
the ground truth in the longitudinal tests, where both ROG and 
EOG remain highly accurate. 

TABLE I.   CORRELATION AND B&A STATISTICS OF THE EM RATE 

ESTIMATION USING ROG FOR EACH SUBJECT 

Subject No. rROG m± σ  (BPM) 

1 0.987 0.70 ± 2.90 

2 0.986 0.75 ± 3.02 

3 0.985 1.04 ± 3.21 

4 0.982 1.00 ± 3.11 

5 0.984 1.46 ± 3.26 

Mean 0.985 0.99 ± 3.10 

TABLE II.   Time lag and correlation between ROG and EOG  
Subject 

No. 
Iteration 

No. 
Time 

Lag (s) 
Max 
Corr. 

rR&E m± σ 
(BPM) 

1 2 0.090 0.88 0.99 0.28 ± 2.24 

2 2 0.054 0.97 0.95 −1.75 ± 6.02 

2 3 0.052 0.92 0.99 0.31 ± 3.00 

2 4 0.032 0.96 0.99 −0.43 ± 2.91 

Mean 0.057 0.93 0.98 −0.40 ± 3.54 

 

TABLE III.   CORRELATION AND B&A STATISTICS OF EM RATE ESTIMATION 

USING ROG AND EOG  AGAINST THE GROUND TRUTH 

Subject 
No. 

Iter. 
No. 

rROG m± σ 
(ROG) 

rEOG m± σ  
(EOG) 

1 2 0.985 0.11 ± 3.13 0.992 0.39 ± 2.26 

2 2 0.979 0.95 ± 4.10 0.950 2.75 ± 5.68 

2 3 0.970 1.43 ± 4.50 0.979 1.74 ± 4.07 

2 4 0.986 0.56 ± 3.16 0.983 0.14 ± 3.61 

Mean 0.980 0.76 ± 3.72 0.976 1.26 ± 3.90 

B. EM direction estimation 

Routine 2 for EM direction estimation include 5 subjects 
with 947 samples of 8 classes of EM, namely 4 directions (up, 
down, right, and left) and 2 instances (once and twice). We built 
the training model within each participant and performed k-fold 
(k = 7) cross validation to estimate the mean accuracy for each 
participant. An overall accuracy was averaged on results from 
all participants.  Fig. 3 shows the normalized confusion matrix 
by ViT. ROG can achieve high accuracy for distinguishing 
different directions. Note that the class ‘D’ (down) has relatively 
lower accuracy than other classes. It may be difficult for 
participants to follow the instruction to move eyeballs 
downwards in a consistent way with eyes closed.  We also 
collected data from EOG in the benchmark experiment using the 
same protocol and signal processing procedures. Accuracy by 
one EOG channel only achieved 57.3%.    

 

V. CONCLUSION 

In this paper, we present a new non-invasive and touchless 
radiooculogram (ROG) for EM monitoring with eyes closed. 
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Fig. 2. EM frequency estimation. (a) ROG amplitude from Tx3- Rx3 
and (b) EOG waveform samples. (c) EM rate in BPM. Correlation and 

agreement (d) between the ground truth and estimation from ROG and 

EOG, and (e) between ROG and EOG.  Left: The scatter plot with 
denoted Pearson’s correlation coefficient. Right: The Bland-Altman 
plot for biases and limits of agreement.  

Fig. 3. The confusion matrix showing the overall accuracy of 94.2% 

for EM direction detection on all 5 subjects.  

 



ROG can accurately detect the EM frequencies in a broad range 
and recognize different EM directions. In comparison with 
conventional EOG, ROG has high accuracy and improved user 
comfort without requiring  direct skin contact. ROG can capture 
direct muscle actuation during EM with less ambiguity and 
interference. The consistent delay of ROG trailing EOG events 
indicates the lag of muscle actuation after the neural stimulation. 
In the future, ROG can be a promising alternative for sleep REM 
monitoring in clinical studies.        
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