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Abstract— Objective: Respiratory disturbances during sleep are 

a prevalent health condition that affects a large adult population. 

The gold standard to evaluate sleep disorders including apnea is 

overnight polysomnography, which requires a trained technician 

for live monitoring and post-processing scoring. Currently, the 

disorder events can hardly be predicted using the respiratory 

waveforms preceding the events.  The objective of this paper is to 

develop an autonomous system to detect and predict respiratory 

events reliably based on real-time covert sensing. Methods: A bed-

integrated radio-frequency (RF) sensor by near-field coherent 

sensing (NCS) was employed to retrieve continuous respiratory 

waveforms without user’s awareness. Overnight recordings were 

collected from 27 patients in the Weill Cornell Center for Sleep 

Medicine. We extracted respiratory features to feed into the 

random-forest machine learning model for disorder detection and 

prediction. The technician annotation, derived from observation 

by polysomnography, was used as the ground truth during the 

supervised learning. Results: Apneic event detection achieved a 

sensitivity and specificity up to 88.6% and 89.0% for k-fold 

validation, and 83.1% and 91.6% for subject-independent 

validation.  Prediction of forthcoming apneic events could be made 

up to 90 s in advance. Apneic event prediction achieved a 

sensitivity and specificity up to 81.3% and 82.1% for k-fold 

validation, and 80.5% and 82.4% for subject-independent 

validation. The most important features for event detection and 

prediction can be assessed in the learning model.  Conclusion: A 

bed-integrated RF sensor can covertly and reliably detect and 

predict apneic events. Significance: Predictive warning of the sleep 

disorders in advance can intervene serious apnea, especially for 

infants, servicemen, and patients with chronic conditions.  

 
Index Terms— Clinical diagnosis; respiration sensors; sleep 

apnea. 

 

I. INTRODUCTION 

LEEP disorders are a major public health problem, and 

 50 to 70 million Americans chronically suffer from the 

consequences from sleep disorders [1]. Obstructive sleep apnea 

(OSA) is the most common sleep-related breathing disorder 

[2][3], with a prevalence in the adult population ranging from 

6% to 17%, explicated by the apnea-hypopnea index (AHI) 

greater than 15 events per hour. OSA can be as high as 49% in 

geriatrics [4], and can still be under-diagnosed due to the 

inconvenience of the present monitoring setup [5]. OSA is 
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characterized by repeated episodes of partial or complete 

obstruction of the respiratory passages during sleep, and may 

result in sleep fragmentation and non-restorative sleep. The 

consequences of OSA include excessive day-time sleepiness, 

insomnia, and increased risks of stroke, obesity, pulmonary 

hypertension and heart attack [6]. Missed identification of sleep 

disorders can be especially serious for young children with 

concerns of sudden infant death [7], and servicemen whose 

circadian rhythm are difficult to maintain but continuous 

vigilance is frequently required [8]. 

Currently, the gold standard of sleep disorder diagnosis is an 

overnight sleep study by polysomnography (PSG) [9], which 

records the breath airflow, respiratory torso movement, oxygen 

saturation (SpO2), body motion, electroencephalogram (EEG), 

electrooculogram (EOG), electromyogram (EMG), and 

electrocardiogram (ECG) by a plethora of sensors. Sleep 

disorders are most often scored by trained sleep technicians 

considering various PSG waveforms. Despite of high accuracy 

by PSG, disadvantages include the high cost and scarce 

availability in clinics, and the uncomfortable experience for 

users. Several methods have been put forward as PSG 

alternatives for sleep disordered breathing (SDB) detection, 

such as the at-home systems using portable devices [10] which 

often has inadequate accuracy [11]. 

Electrocardiogram (ECG) is one of the most extensively 

scrutinized signals for sleep study [12][13]. Together with the 

chest belts for respiratory patterns, SDB can be reasonably 

detected. Apnea alarm systems also usually employ SpO2 from 

the pulse oximeter to provide warning when SpO2 falls below 

a predefined threshold [14]. However, the high rate of false 

alarms can be triggered by motion artifacts and poor sensor 

contact [15].  

Many methods and algorithms have been proposed to detect 

sleep disorders autonomously [9][16]-[18], including various 

machine-learning (ML) models of neural networks, regression, 

and ensemble learning. Nevertheless, in the past decades, fewer 

studies have explored the prediction capability [19][20]. 

Predictive warning of the SDB events in advance can 

potentially improve the effectiveness of therapy. Currently, the 

gold-standard treatment for OSA is the continuous positive 

airway pressure (CPAP) [21][22] by blowing air into the nose. 

Though effective, the use of a single pressure and cumbersome 
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equipment could cause pressure intolerance and reduce long-

term acceptance. To improve user comfort, auto-titrating 

continuous positive airway pressure (APAP) [23] was later 

developed [24]. Recently the COVID-19 pandemic has cast a 

spotlight on the ventilators [25] as life-support machines 

providing intensive ventilatory support. Other innovative 

methods have also been proposed to intervene sleep disorders 

after detecting abnormal events [26]. However, interventions 

can be best applied with apneic prediction, as detection may be 

too late for intervention after 30s. Predictive warning of SDB 

for an advance of 30 – 90 s might be critical to improve 

therapeutic outcomes and reduce the impact on oxygen levels 

and sleep structure.  

Motivated by the unmet needs of reliable prediction of sleep 

disorders with minimal user disturbance, we developed a bed-

integrated system with predicative SDB warning up to 90 s. Our 

system is based on the near-field coherent sensing (NCS) of 

ultra-high frequency (UHF) electromagnetic (EM) waves to 

monitor the dielectric boundary movement of internal organs 

and body parts [26]-[28].  It can be invisible to users and 

requires no personal setup time, especially considering 

occasional leave from beds such as restroom visits. Comfort 

and convenience are of critical importance for overnight sleep 

monitoring because apnea is a sparse event in the long recording 

of sleep in different stages. If users decide to take the monitor 

off and do not take the trouble of re-installation, serious apneic 

incidences can be missed.  

We have further developed a learning-based algorithm for 

detection and prediction. We recruited 27 patients with sleep 

disorders from the Weill Cornell Center for Sleep Medicine for 

overnight recording. The demographic properties and final AHI 

scores were shown in Supplementary Table I. The data from the 

NCS bed sensor was processed for feature extraction to feed 

into the random-forest ML model, which gave accurate SDB 

detection. Apneic events can be further predicted up to 90 s in 

advance based on the present respiratory features. We could 

also determine the correlation between respiratory features and 

SDB to identify the most critical physiological factors for 

detection and prediction of SDB episodes.  

II. EXPERIMENTAL SETUP AND PROTOCOL  

A. Experimental setup 

 

As shown in Fig. 1(a), the bed-integrated sensor consisted of 

a notched miniature coaxial radio-frequency (RF) cable, where 

the metal shield of the middle 5 inches was removed to allow a 

small amount of EM energy leaking into the nearby user body 

[28]. The notch length was designed to accommodate positional 

variations for different patients.  In the near-filed region, the 

dielectric boundary movement by lungs and associated muscles 

would couple to the leaked EM energy, and hence affect the 

signals between the transmitter (Tx) and the receiver (Rx) [29]. 

Two notched-cable sensors underneath the approximate thorax 

and abdomen positions were adopted to capture the motion in 

separate regions during breathing [27]. Software-defined radio 

(SDR) was used to connect the notched sensors and then 

interface with the host computer through USB (Universal Serial 

Bus). As shown in Fig. 1(c), SDR was implemented by the 

National Instrument Ettus B210 with two Tx/Rx ports. The 

notched cables were sewn on the bottom side of the mattress 

pad, as shown in Fig. 1(d), which were placed under an 

incontinence protector and a fitted bedsheet for comfort and 

aesthetic. No apparent performance degradation was observed 

for the additional layers, as evident from our prior studies for 

sensing over several layers of fabrics [30]. The schematic of the 

experimental setup was summarized in Fig. 1(e). In our 

previous work, vital-sign monitoring by this setup has been 

benchmarked against the strain-based chest belts and ECG with 

various sleep postures and large position variation [28]. 

 
For the SDR Tx signal chain, the digital baseband went 

through the digital-to-analog converter (DAC) and was then 

mixed with the carrier frequency fRF. The RF power is less than 

−10 dBm or 0.1 mW, well under the safety limits set by 

occupational safety and health administration (OSHA) in the 

UHF band. The RF signal leaked from the notched structure is 

coupled into internal organ motion, received by Rx, and then 

demodulated and sampled by the analog-to-digital converter 

(ADC) to retrieve the baseband. We employed the quadrature 

scheme as the baseband tone fBB, and the NCS signal can be 

represented by the magnitude and phase modulation on the 

quadrature signal as 

                     𝑁𝐶𝑆𝑎𝑚𝑝(𝑡) = √𝐼𝑅𝑥(𝑡)
2 + 𝑄𝑅𝑥(𝑡)

2                   (1) 

        𝑁𝐶𝑆𝑝ℎ(𝑡) = 𝑢𝑛𝑤𝑟𝑎𝑝(tan−1
𝑄𝑅𝑥(𝑡)

𝐼𝑅𝑥(𝑡)
− 2𝜋𝑓𝐵𝐵 − 𝜃0)   (2)  

                  𝐼𝑅𝑥(𝑡) = 𝐴(𝑡)cos(2𝜋𝑓𝐵𝐵𝑡 + 𝜃0)                      (3) 

                  𝑄𝑅𝑥(𝑡) = 𝐴(𝑡)sin(2𝜋𝑓𝐵𝐵𝑡 + 𝜃0)                     (4) 

 

where 𝜃0 is the phase offset accumulated from the Tx-Rx signal 

chains. fRF was selected at 1 GHz, and any choice between 0.9 

and 2.4 GHz should have similar performance [27]. Two RF 

notched sensors, one approximately at the thorax and the other 

at the abdomen, were operated at two distinctive basebands of 

Fig. 1.  The RF sensor setup: (a) A photo of the notched transmission line 

sensor; (b) NCS sensor positions in relation to the body; (c) The photo of 
the SDR transceiver connected to two NCS sensors; (d) The position of the 

notched sensors under the mattress pad; (e) Schematics of the overall 

experimental setup (PSG not shown).  
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fBB1 =355 kHz and fBB2 = 440 kHz, which were implemented by 

two Tx-Rx channels synchronized in one SDR to reduce cross 

interference. Both channels were sampled at 106 samples per 

second (Sps), and were further down-sampled to 500 Sps after 

demodulation. 

B. Subjects and Data Collection  

 Overnight PSG was performed at the Weill Cornell Center 

for Sleep Medicine at approximately the participants’ regular 

sleep time, and included recording of EEG, EOG, submental 

and anterior tibialis EMG, two-lead ECG, chest and abdominal 

movement by inductive plethysmography, body position, SpO2 

pulse oximetry, and nasal pressure respiratory flow monitoring.  

Scoring of SDB and sleep stages was performed by a registered 

PSG technician licensed in the State of New York. All events 

were scored according to the recommended rules by the 

American Academy of Sleep Medicine [31]. The human study 

was performed under the approved protocol of Weill Cornell 

Medical Center IRB# 19-12021223. 

III. DATA PROCESSING 

After gathering overnight recording of patients, we first 

processed our NCS data along with PSG respiratory data, then 

extracted the respiratory features, and finally fed the data into 

the ML classifier for SDB detection and prediction. Notice that 

NCS and PSG respiratory channels had the same signal 

processing procedure for fair comparison. We used MATLAB 

for signal processing and feature extraction.  

A. Signal processing 

We included the full overnight NCS recording of 27 patients 

with the duration of 7 – 8 hours. PSG was mainly used for 

feature validation and model comparison, and had 3 respiratory 

channels of the airflow, thorax belt, and abdomen belt. SpO2 

from PSG was also collected as an additional input apart from 

the respiratory motion waveforms. Two NCS sensors from the 

thorax and abdomen positions produced respective magnitude 

and phase as four individual inputs.  

The feature extraction contained 8 steps: 

1. Down sample NCS and PSG to 25 Hz. 

2. Synchronize NCS and PSG signals (precision to 1s).   

3. Perform bandpass filtering and smoothing (0.05 Hz to 2 

Hz). 

4. Segment waveform into epochs of Tepoch = 40 s and a 

sliding window of Tslide = 15 s. 

5. Label operator annotation in epoch. 

6. Normalize waveform and extract features in epoch. 

7. Select epochs by signal quality for NCS and PSG. 

8. Output features and annotation to the ML model. 

The bandpass filter in Step 3 was implemented in MATLAB 

by the digital infinite impulse response (IIR). Another Savitzky-

Golay finite impulse response (FIR) smoothing filter [32] with 

4th polynomial order was further employed to rid of high-

frequency noises. The operator annotations were adapted to 

give epoch-based references. In each epoch, if any annotation 

has a time duration > 40%  Tepoch = 16 s, the current epoch will 

be labelled accordingly. The choice of Tepoch between 10 – 20 s 

will not affect the end result significantly. Epoch labels include 

normal, snore, hypopnea, OSA, mixed apnea, and CSA (central 

sleep apnea). If the annotated disorder event lasts < 16 s, the 

epoch will be labeled as normal. If the time duration with no 

annotation > 20 s, current epoch will be removed from dataset. 

This is often due to insufficient evidence of proper PSG 

monitoring, such as patients going to restroom or taking some 

sensors off. 

 
The annotation was directly used as the ground truth for 

disorder detection training and validation. For prediction, 

labelling criterion should be modified. In each epoch, if the 

current label was a disorder event, we would remove it from the 

dataset because prediction was based on the normal period 

before the disorder events. Aiming to predict disorders 0 − 90s 

in advance, we labelled the epochs containing six sliding 

windows before the forthcoming disorder event as the disorder 

precedence “prior”, and the other epochs as “regular”. A simple 

flow chart of prediction labelling is shown in Fig. 2.      

B. Feature extraction  

After epoch segmentation, waveforms were normalized to 

[−1,1] in each epoch. To extract respiratory features, we first 

implemented the peak detection algorithm [33]. A moving-

average curve was first calculated at each time point in a given 

period, which was around one respiration cycle and then 

constantly updated. The points when the moving-average curve 

crossed the original signal were marked as up-crossing points 

for positive slopes in the original signal or down-crossing points 

for negative. Local maximum was labelled as the maximal point 

between two up-down crossing points, and local minimum as 

the minimal point between two down-up crossing points. Fig. 3 

presents sample epochs of respiratory waveforms, annotated 

with different labels of (a) normal, (b) OSA, and (c) hypopnea. 

The red waveform was derived from NCS and the green ones 

from PSG. Solid magenta upward-pointing triangles marked the 

maximum peaks detected by the algorithm and blue downward-

pointing triangles mark the minimum peaks. We could observe 

distinctive patterns in different events.  Waveforms showed a 

more regular respiratory pattern in normal epochs, while 

irregular patterns more frequently indicated disorder epochs.    

Fig. 2. The prediction labelling criterion.  
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TABLE I.    RESPIRATORY FEATURES I (16). 

µBR µPP µIN µEX 
σBR σPP σIN σEX 

CoVBR CoVPP      skew kurt 

n entr ƞp0 Thold 

 
TABLE II.    RESPIRATORY FEATURES II (21). 

ƞp1 ƞp2 ƞp3 ƞp4 
f1max f2max f3max f4max 

CorBR     CorPP CorIN CorEX 

SDBR SDPP SDIN SDEX 

maxIN maxEX maxBR  

minBR minPP   

 

                                      TABLE III.    SPO2 FEATURES (4). 

µSpO2 σSpO2 ƞSpO2 minSpO2 

 

After identifying respiratory cycles using peak detection, we 

could first extract the 4 respiratory parameters in each breath 

cycle to represent the instantaneous respiratory characteristics, 

including BR (breath rate in BPM), PP (peak-to-peak in 

arbitrary units as an estimate of the lung volume), IN (inhalation 

interval in s), and EX (exhalation interval in s). Several 

examples are shown in Fig. 3(d) for the extraction process of 

respiratory parameters.  

After gathering respiratory cycles and parameters, we 

extracted 16 respiratory features which would function as the 

epoch features fed into the ML classifier for detection as listed 

in Table I. The first 8 features were the mean (µ) and the 

standard deviation (σ) of the above 4 respiratory parameters.  

Because BR and PP were two significant factors representing 

the respiratory pattern, we added 2 more features as the 

coefficient of variation (CoV) of BR and PP,  

                                     𝐶𝑜𝑉 = (
𝜎

𝜇
) 2                                 (4) 

CoV showed the extent of variability in relation to the mean. 

Additionally, Skew and kurt measured the tailedness and 

asymmetry of each respiratory cycle, and were averaged over 

all cycles within the epoch. Apart from features derived from 

respiratory parameters, we appended four supplemental 

features including 1) the total number of detected respiratory 

cycles n; 2) the total randomness or entropy of the waveform 

entr; 3) the power in the lower frequency band ((0.05,0.5) Hz) 

divided by the total power in all frequencies ƞp0; 4) the time 

duration when no peak was detected within the epoch Thold. 

    Other than 16 respiratory features in Table I, we added 21 

respiratory features in Table II for the prediction classifier, 

which had 37 respiratory features in total. Augmentation of 

features can enhance the performance of the ML model before 

overfitting becomes dominant. ƞpi and fimax (i = 1~4) represented 

the power in specific bandwidth divided by the total power in 

all frequencies and the frequency with the maximum power 

density within the bandwidth, respectively. The four chosen 

bandwidths were f1 = (1, 2) Hz; f2 = (2, 5) Hz; f3 = (5, 8) Hz; f4 

= (8, 12.5) Hz. Cor was the autocorrelation in a time lag of one 

respiratory cycle to measure the successive similarity of a given 

respiratory parameter.  SD representing the successive 

difference was defined as the mean absolute difference between 

adjacent cycles. At last, we added the maximum of IN, EX and 

BR within the epoch and the minimum of BR and PP. The 

choice of these features is based on the physiological reasoning 

that in the events of disorder, or in the anticipation of the events, 

there would be larger variation in PP and BR within the epoch.  

ƞpi and fimaxc contained the regularity of IN and EX, and possibly 

some tissue vibration characteristics during the disorder events 

below the audible range. 

    Beyond respiratory features derived from the NCS and 

PSG waveforms, we also added features representing oxygen 

saturation as listed in Table III: 1) SpO2: the mean SpO2 level; 

2) σSpO2: the standard deviation of SpO2 level; 3) ƞSpO2: the 

percentage of time when SpO2 < threshold (92%); 4) minSpO2: 

the minimum level of SpO2. 

After segmentation and feature extraction, we added an extra 

step for NCS epoch selection. Signal quality cannot be 

guaranteed during the entire course of overnight recording 

because patients may have random motion lying on the bed or 

leave the bed for restroom visits. Various other factors such as 

ambient movement might bring about noises to cause SNR 

(signal-to-noise ratio) degradation. Therefore, we opted to 

remove the epochs with very low SNR by pre-determined 

thresholds, i.e., epochs with ƞp0 < Thƞp0 = 70 % and σPP > ThσPP 

= 0.3 will be removed from the dataset.  

IV. MACHINE LEARNING MODELS 

A. Data composition  

For output datasets, Table IV shows NCS and PSG dataset 

composition for detection and prediction, respectively. Labels 

for epochs were divided into 7 classes, namely, normal, snore, 

arousal, hypopnea, OSA, mixed apnea, and CSA. Labels of 

normal, snore, and arousal were further grouped into the binary 

classification of “normal”, while labels of hypopnea, OSA, 

mixed apnea, and CSA into “disorder”. We studied the 

IN
PP

EX
1/BR

(d)

Normal 

OSA

Hypopnea

(a)

(b)

(c)

Fig. 3. Waveform examples from NCS and PSG in the epochs labelled 

as (a) normal; (b) OSA; (c) hypopnea. NCS channels are from (a): thorax 

phase; (b): thorax phase; (c): abdomen amplitude. PSG channels are from 
(a): chest; (b): airflow; (c): airflow. (d) Examples of the peak detection 

and feature extraction process. The red line is the respiratory waveform 

from (a). The magenta and blue triangles are the detected maximum and 

minimum peaks. Features of IN, EX, PP and BR are marked.  
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performances of our ML model by both 7 classes and 2 classes, 

although the main focus was on the binary classes of normal 

and disorder.  The first 7 rows in Table IV  presented the total 

number of epochs annotated with these labels in NCS and PSG. 

For the last 2 rows, the disorder ratio was the proportion of 

disorder epochs within all epochs, and the epoch selection ratio 

was the ratio between the total duration of selected epochs and 

overall recording time. Because prediction only included 

normal epochs for disorder precedence, NCS prediction dataset 

has a relatively smaller ratio than detection. As for the PSG 

dataset, we used the epochs derived from the same time periods 

as selected from NCS for fair comparison. Note that though 

PSG and NCS shared the same recording time, PSG only 

utilized one optimal channel out of three respiratory channels 

for each epoch, while NCS may include more than one channel 

with acceptable signal quality within each epoch.  

 
TABLE IV.  NCS DATASET COMPOSITION OF EVENTS AND PRECEDENCIES. 

 NCS 

Detection 

PSG 

Detection 

NCS 

Prediction 

PSG 

Prediction 

Normal 23574 15334 13350 9538 

Snore 621 244 265 126 

Arousal 548 274 578 334 

Hypopnea 7674 3483 3221 1689 

OSA 1902 852 1452 560 

Mixed Apnea 63 34 7 4 

CSA 401 188 405 157 

Disorder ratio 0.289 0.223 0.307 0.231 

Epoch selection 

ratio 

0.413 0.413 0.254 0.254 

 

 

 

 
TABLE V. COMPARISON OF THE MEAN AND STANDARD DEVIATION OF NORMAL 

AND DISORDER EPOCHS OF SELECTED FEATURES.  

Avg± Dev µBR σBR µPP σPP ƞp0 

NCS: Normal  
15.6± 
3.12 

2.62± 
1.65 

0.992± 
0.206 

0.147±
0.050 

87.2± 
7.44 

NCS: Disorder  
17.8± 

3.64 

4.61± 

2.91 

0.859± 

0.220 

0.206±

0.079 

86.1± 

7.37 

PSG: Normal  
15.6± 
3.23 

1.97± 
1.67 

1.171± 
0.208 

0.138±
0.085 

91.7± 
8.52 

PSG: Disorder 
16.7± 

3.47 

2.73± 

1.88 

1.032± 

0.209 

0.213±

0.096 

89.6± 

8.98 

Avg± Dev CoVBR CoVPP µSpO2 σSpO2  

NCS: Normal  0.164± 

0.094 

0.159±

0.074 

93.5± 

5.52 

0.620±

1.85 

 

NCS: Disorder  0.252± 

0.141 

0.266±

0.145 

91.6± 

3.59 

1.70± 

1.34 

 

PSG: Normal  0.122± 

0.089 

0.135±

0.115 

93.5± 

5.67 

0.622±

1.82 

 

PSG: Disorder  0.162± 
0.101 

0.228±
0.137 

91.7± 
3.61 

1.68± 
1.29 

 

 

Fig. 4 showed the selected NCS epoch number for each 

patient in the detection and prediction datasets. The NCS epoch 

selection had a large variation mainly due to subject variation. 

Similar results for PSG dataset were presented in 

supplementary Fig. 1. An example of the NCS epoch selection 

during the whole overnight recording was shown in Fig. 5 for 

detection and prediction datasets from one representative 

patient. For detection in Fig. 5(a), the red bars represented the 

selected normal epochs and the green bars represented the 

selected disorder epochs. For prediction in Fig. 5(b), the normal 

epochs in the detection dataset are further divided into regular 

and prior according to whether an abnormal event will happen 

in the forthcoming 90 s. Note that the PSG dataset had the same 

epoch time distribution with NCS. Table V presented the 

comparison of the mean and standard deviation of the selected 

features in normal and disorder epochs in the NCS and PSG 

detection datasets which had dominant significance in the ML 

model in the following section. Disorder epochs had higher 

standard deviation for all respiratory features, indicating 

disorder epochs were less stable and tend to fluctuate more. 

Meanwhile, disorder epochs also have distinctively higher 

CoVBR, and CoVPP in comparison with normal ones, which were 

important factors to distinguish the two classes as well. For 

oximetry, disorder epochs usually had smaller µSpO2 and higher 

σSpO2. Similar analyses for prediction dataset were presented in 

supplementary Table II. 

B. The Random-forest Model 

We chose the random-forest classifier [34] as the ML model, 

which was an ensemble learning method for classification that 

constructed a multitude of decision trees during training, and 

then output the class selected by most trees. There are two 

advantages in the tree-based ML models: 1) Straightforward to 

interpret as a white-box model, which can help us understand 

the intrinsic relationship between respiratory features and sleep 

disorders; 2) Non-parametric without assumption on the data 

distribution or linearity. Random forest can reduce overfitting 

in a single decision tree but keep the advantages of the decision 

tree. 

(a)

(b)

Prediction

Detection

Fig. 4. The numbers of the selected NCS and PSG epochs from each patient 
in the dataset of (a) detection and (b) prediction.  

 

(a)

(b)

ZZ1
ZZ2

Fig. 5. An example of the selected NCS epoch distribution within the 

whole overnight recording in the (a) detection and (b) prediction 

datasets.  
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However, we faced the problem of class imbalance as shown 

in Table IV, where the number of normal epochs was much 

larger than those of the disorder epochs. In other words, a bias 

or skewness would shift towards the normal event present in the 

dataset. For remediation, we added class weights for statistical 

amplification, which assigned different weights to the normal 

and disorder labels (normal:disorder = 1:3). The model thus 

penalized the misclassification made on the minority class of 

disorder. This practice achieved higher sensitivity to disorder 

detection effectively.  

  Class weighting can improve sensitivity, while outlier 

removal can improve specificity.  Before constructing the ML 

model, we first cleaned the dataset by removing the normal 

epochs that were distinctively deviant from the majority. In our 

study, we assumed that the normal epochs in the dataset should 

have a relatively regular and similar respiratory pattern and thus 

data should form a dense cluster. Abnormal observations that 

are far from the majority ones within normal epochs were 

removed as outliers that were most likely due to noisy or wrong 

data. Here, we used the isolation forest algorithm [35], an 

unsupervised anomaly detection method based on random 

forests, as the outlier detection method.  The outlier removal 

ratio was set at 0.2, which efficiently promoted specificity by 

eliminating noisy data in normal epochs.  

C. Results for disorder detection 

The k-fold and leave-one-participant-out cross-validations 

(CV) were employed as model verification, where k-fold CV 

tested the skill of the model on new data, and leave-one-

participant-out CV tested the robustness to unseen patients. For 

k-fold CV of k = 5, we divided the whole dataset (N cases) into 

separate training (0.8N cases) and testing (0.2N cases), and the 

process was repeated 5 times until all cases had been tested as 

unseen data. For leave-one-participant-out CV, the model was 

trained on the data sets from all patients except one, whose data 

were then used as testing. The CV process was reinitialized and 

repeated for each patient as the testing case.  

Fig. 6 shows the overall confusion matrices for detection 

using k-fold random forest, while Table VI further presents the 

statistics for k-fold. The binary class of normal and disorder 

achieved better accuracy than the full seven classes, whose 

confusion matrices are shown in supplementary Fig. 2. NCS + 

SpO2 resulted in the best performance for disorder detection 

with 88.9% accuracy, 88.6% sensitivity and 89.0% specificity. 

The top three important features were SpO2 deviation SpO2, 

peak-to-peak deviation PP, and breath rate deviation BR. 

When only NCS datasets were used, the sensitivity has 

significantly degraded to 63.6%, indicating SpO2 was an 

important factor for apnea identification apart from respiratory 

patterns. The top three important features became PP, BR, and 

BR.  

Note that the PSG detection here only utilized one optimal 

channel out of three respiratory channels for each epoch. In 

supplementary Fig. 3, we also presented the detection 

performance using only airflow or respiratory-belt channels 

from PSG. Overall, the accuracy using different PSG 

respiratory channels was similar. 

 
TABLE VI.  COMPARISON OF THE DETECTION DEVICES BY 5-FOLD CV. 

 

We further compared multiple classifiers including k-nearest 

neighbor (kNN), support vector machine (SVM), decision tree, 

hybrid model and random forest, as presented in Table VII.  The 

hybrid model consisted of the voting classifier ensembled from 

SVM, kNN and decision tree altogether. kNN had the lowest 

sensitivity to disorder detection, although the specificity was 

very high. Random forest resulted in highest accuracy for NCS 

+ SpO2 dataset, and also achieved high sensitivity and 

specificity. The overall difference among SVM, decision tree 

and random forest was relatively small. 

 
TABLE VII. ALGORITHM COMPARISON FOR DETECTION BY 5-FOLD CV. 

Algorithm 

CV Accuracy (%) Sensitivity (%) Specificity (%) 

NCS 
NCS 

+ SpO2 
NCS 

NCS 

+ SpO2 
NCS 

NCS 

+ SpO2 

kNN 82.9 87.0 47.1 62.0 99.1 98.3 

SVM 71.8 87.1 80.3 90.3 68.0 85.7 

Decision Tree 77.3 87.5 72.1 88.3 79.7 87.2 

Hybrid* 81.5 89.7 69.6 86.8 86.9 91.0 

Random Forest 86.2 88.9 63.6 88.6 96.3 89.0 

Hybrid* is the voting classifier ensembled from SVM, kNN and decision tree. 

 

Data set NCS NCS + SpO2 PSG PSG + SpO2 

Accuracy 86.2% 88.9% 76.9% 85.2% 

Sensitivity 63.6% 88.6% 63.7% 78.3% 

Specificity 96.3% 89.0% 81.1% 87.4% 

Feature 
importance 

σPP 
(0.50) 

σBR 

(0.27) 

BR 

(0.05) 

CoVPP 

(0.03) 

σSpO2 

(0.58) 

σPP 

(0.14) 
σBR 

(0.08) 
CoVPP 

(0.04) 

CoVPP 

(0.42) 

Thold 

(0.10) 

PP 

(0.05) 

EX 

(0.05) 

σSpO2 

(0.36) 

ƞSpO2 

(0.05) 

BR 

(0.05) 

σPP 

(0.05) 

(a) (b)

(c) (d)

Fig. 6. The confusion matrices showing Normal (0) and Disorders (1) 

detection by the random forest model using the features from (a) NCS; (b) 

NCS +SpO2; (c) PSG; (d) PSG +SpO2. The cells list the number of epochs 
in each category. A 5-fold CV was tested on the entire data. 
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TABLE VIII.  COMPARISON OF THE DETECTION DEVICES BY LEAVE-ONE-

PARTICIPANT-OUT CV. 

 

The results above were tested from k-fold CV, and the leave-

one-participant-out CV for unseen patients was shown in Fig. 7. 

High performance of 88.9% accuracy, 83.1% sensitivity and 

91.6% specificity was maintained using NCS + SpO2 features. 

As shown in Figs. 7 (c)(d), for PSG dataset, sensitivity to 

disorder events remain slightly lower than NCS.  The accuracy 

and feature importance using k-fold and leave-one-participant-

out CV were similar, as shown in Table VIII. 

The misalignment in timing between the thorax and abdomen 

waveforms in the epoch can be a potential feature for OSA 

detection from the paradoxical breathing patterns [29]. In 

supplementary Fig. 4, we presented the additional comparison 

results with/without adding the time lag feature Tlag indicating 

the misalignment in NCS. Tlag was calculated by the shifted 

time lag of the abdomen channel that gave the highest cross-

correlation between the thorax and shifted abdomen channels. 

Phase and amplitude channels were separately compared. 

However, the accuracy results after adding the Tlag feature were 

not much improved as shown in supplementary Fig. 4, probably 

because the OSA event was already represented in other 

respiratory features. Therefore, we did not include Tlag as a 

feature in the other benchmarks.                                     

D. Results for disorder prediction   

In this section, we presented the accuracy statistics for SDB 

prediction using the waveforms in the normal epochs preceding 

the disorder epoch by 0 – 90 s. Similar CV tests were performed 

on prediction datasets as in detection.  

Fig. 8 shows the overall confusion matrices using the k-fold 

random forest model, and Table VIII further presents the 

statistics. Results for the full 7 classes are shown in 

Supplementary Fig. 5. Similar to detection, prediction of 

individual events from 7 classes had lower accuracy in 

comparison with the binary class. In contrast to the detection 

results when NCS + SpO2 was better than NCS alone, we can 

find that the performance of using only NCS was comparable 

to NCS + SpO2, meaning that NCS respiratory information 

alone can function as a predictor for disorders. Physiologically 

speaking, low SpO2 was the result of the apneic event, and 

therefore was useful in detection, but not in prediction. 

Sensitivity to disorder precedence epochs (81.3%) was 

relatively lower than those of detection (88.6%), which was also 

understandable because disorder precedence has less evident 

changes in respiratory features than the actual disorder events.   

 
TABLE IX.  COMPARISON OF THE PREDICTION DEVICES BY 5-FOLD CV. 

 In comparison with PSG, NCS had distinctively higher 

accuracy and sensitivity for SDB prediction. This was likely 

because the important feature ƞp0, representing the signal power 

dominance within the bandwidth of (0.05, 0.5) Hz, was not well 

represented in PSG, as NCS had a unique capability to extract 

motion characteristics of a broad bandwidth [38][39]. The 

important features for prediction in NCS included ƞp0, σPP 

CoVPP, and σBR according to Table VIII. To identify 

forthcoming abnormality, the feature ƞp0 captured whether the 

waveform was monotonic in the fundamental BR or contained 

more high-frequency attributes. The features CoVPP and σPP 

Data set NCS NCS + SpO2 PSG PSG + SpO2 

Accuracy 84.4% 88.9% 73.8% 85.5% 

Sensitivity 60.4% 83.1% 56.7% 74.3% 

Specificity 95.2% 91.6% 79.2% 89.1% 

Feature 
importance 

σPP 
(0.50) 

σBR 

(0.28) 

BR 

(0.05) 
CoVPP 

(0.02) 

σSpO2 

(0.62) 

σPP 

(0.15) 

σBR 

(0.08) 
CoVPP 

(0.03) 

CoVPP 

(0.43) 

Thold 

(0.10) 

EX 

(0.05) 

BR 

(0.05) 

σSpO2 

(0.70) 

CoVPP 

(0.03) 

ƞSpO2 

(0.03) 
kurt 

(0.02) 

 

(c) (d)

(a) (b)

Fig. 7. The confusion matrices showing Normal (0) and Disorders (1) 

detection by the random forest model using the features from (a) NCS; (b) 
NCS +SpO2 (c) PSG; (d) PSG +SpO2 by the leave-one-participant-out CV 

on the entire data. 

 

(a) (b)

(c) (d)

Fig. 8. The confusion matrices showing Regular (0) and Prior (1) 

prediction by the random forest model using the features from (a) NCS; 

(b) NCS +SpO2;(c) PSG; (d) PSG +SpO2. The cells list the number of 
epochs in each category. A 5-fold CV was tested on the entire data. 
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represented the peak-to-peak variations, which corresponded to 

the lung volume.  σBR, representing the breath rate variation, can 

be important too.  

 

 
TABLE X. ALGORITHM COMPARISON FOR PREDICTION BY 5-FOLD CV. 

Algorithm 

CV Accuracy (%) Sensitivity (%) Specificity (%) 

NCS 
NCS 

+ SpO2 
NCS 

NCS 

+ SpO2 
NCS 

NCS 

+ SpO2 

SVM 77.4 80.4 76.7 80.1 77.8 80.5 

kNN 83.0 83.4 46.3 47.6 99.6 99.5 

Decision tree 79.7 79.7 81.0 81.0 79.2 79.2 

Hybrid* 79.3 82.7 73.9 77.7 81.5 84.7 

Random forest 81.9 81.9 74.6 81.3 84.9 82.1 

Hybrid* is the voting classifier ensembled from SVM, kNN and decision tree. 

 

 

 

 

Different algorithms for prediction were compared regarding 

classification performance in Table IX. kNN lacks a reasonable 

sensitivity to disorder events. Random forest has a good 

performance on specificity and achieves reasonably high 

sensitivity and overall accuracy. SVM and decision tree can 

also generate results with nearly similar performance.      

In addition to k-fold CV, leave-one-participant-out CVs were 

performed to validate the robustness of the prediction system 

on unseen patients and the results are shown in Fig. 9. The result 

reached 81.7% accuracy, 72.7% sensitivity and 85.3% 

specificity using only the NCS features. The accuracy remained 

high for unseen patients and showed a good match with k-fold 

CV results. Similar results from the PSG dataset were presented 

in Figs. 9 (c)(d). The accuracy and feature importance using 

leave-one-participant-out CV were shown in Table XI. 

We also compared the results for prediction in advance of 

different time length ranging from 30s to 120s as shown in Fig. 

10. Accuracy decreased when the prediction time length 

increased, and sensitivity degraded significantly when the 

prediction time exceeded 90 s. We selected 90 s as the final 

choice to obtain a reasonably high accuracy as well as a longest 

feasible warning time.  

In Fig. 10(b), we presented additional comparison for the 

different combinations of epoch duration Tepoch and sliding 

window Tslide using (upper) NCS and (lower) NCS +SpO2 

features. Accuracy was hardly affected by the choices of Tepoch 

and Tslide . We chose Tepoch = 40 s and Tslide = 15 s in the main 

analysis mostly for convenience and a relatively large number 

of epochs.  

 The above results of our SDB detection and prediction were 

based on the feature extraction followed by the ML model. We 

also experimented on convolutional neural network (CNN) as 

the ML model, eliminating the feature extraction process. For 

CNN, we used the waveform from NCS as the direct input and 

constructed the network consisting of 5 convolution layers and 

3 linear layers. Dataset was divided into training (80%) and 

testing (20%) parts and the accuracy for the unseen testing data 

was estimated. Results were presented in Supplementary Fig. 6 

for detection (accuracy = 0.650) and Supplementary Fig. 7 for 

prediction (accuracy = 0.653) using the NCS dataset. In this 

study, CNN had inferior performance to the approaches using 

feature extraction followed by the classic ML models. This was 

Data set NCS NCS + SpO2 PSG PSG + SpO2 

Accuracy 81.9% 81.9% 74.1% 76.1% 

Sensitivity 74.6% 81.3% 55.8% 64.8% 

Specificity 84.9% 82.1% 78.9% 79.1% 

Feature 

importance 

ƞp0  

(0.31) 
σPP  

(0.30) 

CoVPP 

(0.19) 

σBR 

(0.13) 

σPP  

(0.35) 
ƞp0  

(0.28) 

σSpO2 

(0.18) 

σBR 

(0.09) 

σPP  
(0.21) 

minPP  

(0.17) 
CoVPP 

(0.10) 

PP  

(0.09) 

σSpO2 

(0.49) 
ƞSpO2  

(0.05) 

PP  

(0.05) 

PP 

(0.05) 

Data set NCS NCS + SpO2 PSG PSG + SpO2 

Accuracy 81.7% 81.9% 65.2% 72.1% 

Sensitivity 72.7% 80.5% 62.6% 68.3% 

Specificity 85.3% 82.4% 65.8% 73.1% 

Feature 

importance 

ƞp0  

(0.32) 
σPP  

(0.27) 

CoVPP 

(0.21) 

σBR 

(0.14) 

σPP  

(0.36) 
ƞp0  

(0.28) 

σSpO2 

(0.18) 

σBR 

(0.10) 

minPP  

(0.22) 

σPP  
(0.15) 

PP  

(0.11)  
CoVPP 

(0.08) 

σSpO2 

(0.51) 

PP  

(0.06) 

minSpO2 

(0.05) 

SpO2   

(0.05) 

TABLE IX.  COMPARISON OF THE PREDICTION DEVICES BY 5-FOLD CV. 

 
 

(a) (b)

(c) (d)

Fig. 9. The confusion matrices showing Regular (0) and Prior (1) 

prediction by the random forest model using the features from (a) NCS; (b) 
NCS +SpO2 (c) PSG; (d) PSG +SpO2 by the leave-one-participant-out 

CV. 

 

TABLE XI.  COMPARISON OF THE PREDICTION DEVICES BY LEAVE-ONE-
PARTICIPANT-OUT CV.  
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likely due to the insufficient SNR in the raw waveforms, where 

the feature extraction in the epoch duration could provide some 

data smoothing and selection effects. 

 

E. Results for AHI classification  

AHI, calculated by the number of apnea and hypopnea events 

per hour of sleep, is an important feedback to the patient to 

indicate the severity of sleep apnea [36]. Individual AHI 

information for each participant is shown in Supplementary 

Table 1 according to the technician annotation derived from full 

PSG observation.  

In addition to epoch-based apnea detection and prediction, 

we also evaluated the performance for AHI classification from 

the NCS inputs only. We first divided all participants into 

binary classes of AHI ≤ 5 as “Normal” and AHI > 5 as “OSA 

Present” [37]. Using our NCS detection results for normal and 

disorder, we extracted overall features for each participant 

including the total epoch numbers of normal and disorder and 

the NCS F selection rate. We then adopted a simple random 

forest model by these features from each participant as the 

input, and estimated the AHI class. The resulting confusion 

matrix of the two-class AHI classification between annotation 

and NCS output is shown in Fig. 11 (a). In Fig. 11 (b), we also 

presented the three-class confusion matrix from AHI ≤ 5 as 

“Normal”; 5 < AHI ≤  15 as “Mild OSA”; 15 < AHI as 

“Moderate OSA” [37]. Our NCS estimation achieved accuracy 

of 0.93 for binary AHI classification, and 0.70 for three classes. 

Our AHI classification performance is limited due to the present 

small sample size.  Alternatively a random-forest regressor ML 

model can produce a continuous AHI score [27], which is 

described in Supplementary Fig. 8.  Our AHI accuracy can 

likely make further improvement in future studies when data 

from more patients with broader distribution become available.

 

V. DISCUSSION 

A. Remaining Challenges  

Challenges to construct a clinically acceptable sleep apnea 

detection and prediction platform still remained: 

1) Sensitivity was only above 70% for prediction at the current 

stage. On the brighter side, the NCS deployment can be 

invisible to patients throughout the monitoring, and was 

hence ultimately comfortable and convenient. Our present 

system can still be a reasonable complement to guide 

interventions [21]-[26].  

2) Our current system cannot classify different respiratory 

events with sufficient accuracy. Though the binary-class 

(normal/disorder) results had a relatively high accuracy, our 

system did not perform well for identifying OSA, CSA, and 

hypopnea individually. This may be due to the much more 

hypopnea events than OSA and CSA ones in the dataset. The 

system thus had limited learning for OSA and CSA, and tend 

to classify new disorder events as hypopnea.  

3) SNR of the waveform needed further improvements. In this 

study, we relied on NCS epoch selection to eliminate noisy 

episodes. Sensor improvement for higher SNR and higher 

tolerance to subject variation and motion interference should 

be investigated. 

4) The snoring event needed features from higher frequency. In 

this study, the snoring event was not included in the disorder 

class. However, snoring was an important sleep abnormality 

in need of more comprehensive investigation. Our NCS 

sensing technology can couple to low-frequency motion like 

(a)

(b)

Fig. 10. (a) Comparison of NCS prediction accuracy of the different 
time length ranging from 30s to 120 s using features from (upper) NCS 

and (lower) NCS +SpO2. (b) Comparison of detection accuracy using 

different combinations of epoch duration Tepoch and sliding window Tslide 
in the (upper) NCS and (lower) NCS +SpO2 datasets. 
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Fig. 11. The Confusion matrix of the (a) two-class and (b) three-class 

AHI classification between annotation and NCS output from 27 

patients. In (a), the two AHI classes are: AHI ≤ 5: Normal; 5 < AHI : 

OSA Present, with an accuracy = 0.93; sensitivity = 0.95; specificity 

= 0.88. In (b), the three AHI classes are: AHI ≤ 5: Normal; 5 < AHI 

≤ 15: Mild OSA; 15 < AHI < 30: Moderate OSA, with an accuracy = 

0.70. 
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respiration [27] as well as high-frequency motion of internal 

tissues [38]. Snoring can be detected with minimal ambient 

interference by an additional NCS probe on the jugular or 

submental area, similar to cough sensing [39].  

B. Future Improvements from Expanded Scope 

The potential extension in future research studies includes: 

1) We will expand future studies by adding more severe cases 

with AHI ≥ 30. During the execution period of our study 

protocol in the Weill Cornell Center for Sleep Medicine, we 

recruited participants with suspected sleep apnea that turned 

out to have mild and moderate conditions, while others were 

normal. Future study including patients with wider range of 

AHI can also help build a more comprehensive and mature 

learning model. 

2) Broadening the demographic groups to include high-risk 

patients for SDB, including opioid addicts, COPD, or infants 

at risk for severe apneic events and respiratory arrest, 

especially those who are born preterm [7][40]. Reliable sleep 

apnea detection and prediction in these high-risk patients 

would help improve outcome and prevent fatality.  

3) Developing a system that uses SDB prediction to guide real-

time intervention including user warning and ambient 

stimulation, followed by overall effectiveness assessment. 

The benefit of intervention will likely depend on the 

prediction accuracy and reliability. By integrating detection, 

prediction and intervention, we would hopefully improve 

diagnosis, prognosis and therapy for SDB.   

4) Extending the study to include patients with more severe 

cases of OSA and the associated risk in comorbidities by 

examining the possible correlation [41].  We will also try to 

include patients with CSA to further explore the clinical 

utility of the proposed technology, although the number of 

patients needs to be much larger due to the infrequent 

occurrence of CSA. The detection model will also need 

broader dimension of pathological features in order to 

achieve a higher confidence level. 

5) Improving the learning model to achieve higher accuracy and 

reliability. Improvements can include additional 

preprocessing for feature extraction, better noise reduction 

algorithms, and more complex ML models such as gain-

adversarial network (GAN) [42]. 

VI. CONCLUSION  

In this paper, we reported a hardware-software co-designed 

system that can detect and predict SDB. This system was based 

on a covert bed-integrated RF sensor by NCS, which can be 

non-invasive and invisible to user. SDB detection for 

considering apneas and hypopneas together achieved a 

sensitivity and specificity up to 88.6% and 89.0% for k-fold 

validation, and 83.1% and 91.6% for subject-independent 

validation, respectively.  Subsequent apneic events can be 

predicted up to 90 s in advance based on the present respiratory 

features. Disorder prediction achieved a sensitivity and 

specificity up to 81.3% and 82.1% for k-fold validation, and 

80.5.0% and 82.4% for subject-independent validation, 

respectively. By the random forest ML model, the most 

significant physiological symptoms before and during the SDB 

episodes can also be revealed.   

The current sleep apnea diagnosis platform was mostly based 

on PSG, which remained expensive in terms of hardware and 

operators, uncomfortable from body electrodes, and time-

consuming for deployment.  The ability to predict upcoming 

SDB events by PSG was also limited. In the future, our covert 

detection and prediction system could expedite intervention, 

and improve diagnosis and therapy for respiratory disturbance 

during sleep. 
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